IUCF Detector Workshop #### **Neutron Detector R&D Roadmap** Ron Cooper SNS Detector Team Leader ## **Roadmap Components** - Science case - Presented by Lowell Crow - Instrument requirements - 24 beam lines in high power target station - 14 approved instruments - Detector deficiencies - Almost all instruments need better detectors - Detector R&D - SNS driven at present - Prototype development - Education and outreach # **Roadmap Components (2)** - Management plan - Maintain science focus - Communication and coordination - Organize pool of expertise, provide reviews and direction - Maintain whitepaper: http://www.sns.gov/documentation/ - Neutron_Detector_White_Paper_March_03.pdf #### Instruments # **Component 2: Instrument Requirements** | | | | Tabla | 3. In stru m e n | t roquirom o | nte | | SPAI | LATION NEUTRON SOURCE | |---|------------------------|------------------------|--------------------------------------|---------------------------------------|---------------------|----------------------------|--|---|------------------------------------| | Instrument | Number
of
pixels | Pixel
area
(cm²) | Maximum
neutron
energy
(eV) | Neutron
capture
efficiency
% | Gamma
efficiency | Time
resolution
(µs) | Peak
pixel
count
rate
(n.s ⁻¹) | Detector
count
rate
(n.s ⁻¹) | Data
transfer
rate
(Mb/s) | | Powder
Diffractometer | 40,000 | 2.4 | 0.33 | 50 | 10 ⁻⁶ | 1 | 100 | 3.5 × 10 ⁶ | 28 | | Disordered
Materials
Diffractometer | 150,000 | 0.25 | 50 | 20 | 10 ⁻⁶ | 1 | 300 | 4.2 × 10 ⁷ | 340 | | High-Pressure
Diffractometer | 100,000 | 0.02 | 0.5 | 50 | 10 ⁻⁷ | 1 | 1 × 10 ⁴ | 3.0 × 10 ⁵ | 2.4 | | Engineering
Diffractometer | 80,000 | 1.25 | 0.15 | 50 | 10 ⁻⁶ | 1 | 2 × 10 ⁵ | 2.4 × 10 ⁶ | 20 | | Single-Crystal
Diffractometer | 5×10 ⁶ | 0.01 | 0.35 | 50 | 10 ⁻⁶ | 10 | 2 × 10 ⁴ | 3.0 × 10 ⁵ | 2.4 | | SANS
Diffractometer | 40,000 | 0.25 | 0.08 | 50 | 10 ⁻⁷ | 10 | 1,500 | 2.0 × 10 ⁷ | 160 | | Liquids
Reflectometer | 40,000 | 0.01 | 0.02 | 50 | 10 ⁻⁷ | 10 | 1 × 10 ⁶ | 7.0 × 10 ⁷ | 560 | | Magnetism
Reflectometer | 40,000 | 0.01 | 0.03 | 50 | 10 ⁻⁷ | 10 | 1 × 10 ⁶ | 9.0 × 10 ⁷ | 720 | | Backscattering
Spectrometer | 4,500 | 1.3 | 0.01 | 50 | 10 ⁻⁶ | 1 | 1 × 10 ⁴ | 1.3 × 10 ⁵ | 1 | | ARC
Spectrometer | 70,000 | 2.5 | 1.0 | 50 | 10 ⁻⁷ | 1 | 1 × 10 ⁶
(Bragg) | 5.0 × 10 ⁵ | 4 | | CNC
Spectrometer | 15,000 | 6.3 | 0.05 | 50 | 10 ⁻⁷ | 1 | 1 × 10 ⁶
(Bragg) | 7.0 × 10 ⁶ | 56 | | HRC
Spectrometer | 70,000 | 2.5 | 1.0 | 50 | 10 ⁻⁷ | 1 | 1 × 10 ⁶
(Bragg) | 4.0 × 10 ⁵ | 3.2
May 29-30, 2 | ## **Critical Requirements** - Powder Diffractometer - Large area coverage > 10 m² when completed - 6 mm x 40 mm pixels - 50% efficiency for 325 meV, 0.5 Å neutrons - Disordered Materials Diffractometer - Large area coverage > 5 m² when completed - 20% efficiency for 50 eV neutrons - Long term stability - High Pressure Instrument - Low gamma sensitivity - Position resolution: 1.5mm x 1.5mm - Continuous coverage # **Critical Requirements (2)** - Engineering Instrument - Large area coverage > 10 m² when completed - Maximum pixel rate: 20 n in 100 μs from elastic peaks - 100 μm resolution residual stress detector - Single Crystal Diffractometer - 1-mm resolution - High dynamic range with minimal pixel cross talk - Maximum rate: 2x10⁴ N per second per peak, 2000 peaks - SANS Instrument - Maximum rate: 2x10⁷ N per second - Low gamma sensitivity - 50% efficiency for 80 meV neutrons # **Critical Requirements (3)** - Liquids and Magnetism Reflectometers - 1-mm position resolution - Maximum rate: 10⁶ N per second for 100 pixels, 10⁸ total - High magnetic fields - Low gamma sensitivity - Backscattering Spectrometer - Detectors in vacuum - Low gamma sensitivity - Stability - CNCS Spectrometer - Large area coverage > 20 m² when completed - Minimized TOF uncertainty - Recovery from Bragg peaks - Stability # **Critical Requirements (4)** - ARCS and Sequoia Spectrometers - Large area coverage, ≈ 20 m² - Detectors in vacuum - Recovery from Bragg peaks - 50% efficiency at 1 eV - Stability - Fundamental Physics part of experiment - Triple Axis He LPSDs - Spin Echo 30cm x 30cm at 3x10⁷ N per second - Protein Crystallography - Chemical Spectroscopy - Polarized Neutron Instrument # **Component 3: Detector Deficiencies** | Instrument | Table 4. Detector deficier Parameter | Desired | NS Instrum
Current | Comment | |---|---|--------------------------|--|--| | instrument | | Desired | Current | 0.02 is state of the art for ³ He gas | | | Pixel area (cm²) | 0.01 | 0.02 | detectors | | Liquids &
Magnetism
Reflectometers | Maximum instantaneous rate/pixel (counts/s) | 1.3 ×
10 ⁶ | 7 × 10 ⁴ | Beam attenuator will be necessary | | | Maximum total instantaneous rate (counts/s) | 1.2 ×
10 ⁸ | 1 × 10 ⁶ | Beam attenuator will be necessary | | | Maximum time average rate/pixel (counts/s) | 6.2 ×
10⁵ | 7 × 10 ⁴ | Beam attenuator will be necessary | | | Maximum total time average rate (counts/s) | 5.9 ×
10 ⁷ | 5 × 10 ⁵ | Beam attenuator will be necessary | | | Transmission monitor pixel area (cm²) | 0.04 | 1 1.0 Ne pr 1 × 10 ⁵ Be 3 Ur 1,000 10,000 Ne de co 1 × 10 ³ 1 × 10 ² Ne co 1 × 10 ³ 1 × 10 ² Ne co 1 c | Characterize angular dependence of inc. beam | | | Neutron efficiency at 1 eV (%) | 50 | 30 | 60% reduction in data rate | | Powder | Detector cost (\$/m²) | 150K | 250K | Wavelength shifting modules will cover more area for the same cost | | Diffractometer | Transmission detector maximum time average data rate (counts/s) | 3.4 ×
10 ⁷ | 1 × 10 ⁶ | Reduce uncertainty in beam normalization | | Engineering
Instrument | Spatial resolution (mm) | 0.1 | 1.0 | Needed for residual stress depth profile measurements | | | Transmission detector maximum time average data rate (counts/s) | 5 × 10 ⁷ | 1 × 10 ⁶ | Beam attenuator will be necessary | | | Spatial resolution (mm) | 1 | 3 | Unit cells limited to 30Å or less | | Single-Crystal | Transparent scintillator brightness (photons/neutron) | 30,000 | 10,000 | Needed for 1-mm resolution detectors | | Diffractometer | Dynamic range
(peak counts/background counts) | 1 × 10 ³ | 1 × 10 ² | Needed for diffuse scattering studies | | | Spatial resolution (mm) | 10 | 25 | Q resolution limited by detectors for small samples | | Inelastic Chopper | Time resolution (µs) | 1 | 5 | Needed for high-resolution energy measurements | | Spectrometers | Maximum instantaneous rate per detector (counts/sec) | 2 × 10 ⁷ | 7 × 10 ⁴ | Detectors will saturate, and inelastic data will be lost | | Disordered
Materials
Diffractometer | Detection efficiency for 50eV neutrons (%) | 20 | 5 | Needed to measure atomic connectivity and defect distributions | | Extended-Q | Maximum total time average rate (counts/sec) | 5 × 10 ⁷ | 5 × 10 ⁵ | Needed to study weakly scattering biological samples | | SANS | Maximum parallax error (mm) | 5 | 20 | Q resolution limited by detector parallax | ## **Critical Deficiencies** | | | | (1 | 1 | 7 | |-------|-------|------|-----|------|----| | | | 12 | | ٧. |) | | SPALL | ATION | NEUT | RON | SOUR | (E | | | Т | Г | SPACEATION NEUTRON SOURCE | |--|----------------------|--|---------------------------| | Instrument | Rate | Resolution | Efficiency | | Liquids & Magnetism
Reflectometers | x100 | x2 Spatial
(x250 Monitor) | | | Powder Diffractometer | (x35 Monitor) | | x1.6 | | Engineering
Instrument | (x50 Monitor) | (x10 Residual Stress
Detector, 1-D) | | | Single Crystal | | x10 Spatial | x 3 | | Inelastic Chopper
Spectrometers | x300
(Bragg peak) | x5 Time
x2.5 Spatial | | | Disordered Materials
Diffractometer | | | x5 | | EQ-SANS | x100 | x4
(Parallax) | | ## **Component 4: Detector R&D** - No Standard Detector - Size varies from 4 cm² to 20 m² - Efficiency requirements vary by 2 orders of magnitude - Maximum pixel rates vary by 4 orders of magnitude - Dominant requirement that drives detector selection can be: - Efficiency - Gamma sensitivity - Time resolution - Cost - Rate capability - Stability - Other? #### Gas Detector R&D - 2-D Gas Detectors needed for: - Low gamma sensitivity and high stability applications - New high rate applications lead to - Discrete pixels 40,000 channels - Ionization mode ³He - Multilayer GEM - Micromegas - Potential Applications - SANS Instruments - Spin echo Instruments - High pressure Instruments - Reflectometers 13 #### Scintillator Detector R&D - Scintillator Detectors needed for: - Large area coverage with small pixels - High neutron detection efficiency - New bright, transparent scintillator - 1-μs time resolution - New readout schemes - Wavelength shifting fiber - Standard fiber - Anger camera - Potential Applications - Powder diffractometers - Engineering Instruments - Single Crystal Diffractometers - Disordered Materials Diffractometers 14 ## **Proportional Counter R&D** - Proportional Counters needed for: - Low-cost large-area coverage - Stability - Low gamma sensitivity - New designs needed - Improved time resolution - Eliminate Bragg peak saturation - Potential applications - Backscattering spectrometers - Chopper spectrometers - Triple axis spectrometers Oak Ridge ## **High Resolution Detector R&D** - High resolution detectors needed for: - Sub millimeter time dependent imaging - Small samples - Very high rate applications - Neutron beam characterization - Potential detector Research includes: - Semiconductor detectors - Microsphere detectors - Micromegas Detectors - Conversion foils - Potential Applications: - Residual stress measurements - Small samples on the High Pressure instrument - Transmission detectors # Component 5: National Plan for Neutron Detector Development - Make sure neutron detector development meets the needs of the neutron users community - Coordinate detector R&D within the U.S. and worldwide - Prioritize the use of limited R&D resources - Plan components: - Executive committee - Advisory panel - Neutron users (6) - Detector experts (6) - Roadmap - Whitepaper # **Management Plan** #### **Executive Committee** - Current membership: - John Cameron IUCF - Pat Gallagher NIST - Veljko Radeka BNL - Christine Hoffmann SNS - Ron Cooper SNS - Responsibilities: - Supervise the plan - Maintain communication - Administer workshops - Periodic reviews - Request support from the advisory panel 19 Oak Ridge #### Communication Diverse groups # **Roadmap Components** - Advisory panel - International membership - Pool of expertise to support - Funding agencies - Executive committee - Detector Pl's - Review proposals - Roadmap - Whitepaper - Reference for proposals - Living document - Expand to include steady-state sources - Update as needed ## **Summary** - The roadmap consists of: - Science case - Instrument requirements - Detector deficiencies - Detector R&D - Management plan - Maintained as a whitepaper - Living document - Reference for proposals - Goal is a coordinated effort - Science focus - Communication - Guidance